
GPU Programming
Duy-Phuc Pham

Sep. 2021

1



Whoami

3rd year PhD candidate at IRISA/CNRS


Machine/Deep-Learning, Malware analysis, Side-channel.

2



Outline

1. Introduction to GPU


2. Introduction to CUDA C/C++


3. Rainbow table/hash generator on GPU

3



1. Introduction to GPU

Graphics processing unit


A electronic circuit designed to rapidly use memory to accelerate the 
creation of images for output to a display device.


Gaming software companies, movie companies and medical research

4



CPU vs. GPU
CPU 

• General-purpose capabilities, mostly 
sequential operations 


• Established technology 


• Usually equipped with 8 or fewer, powerful 
cores 


• Optimal for some types of concurrent 
processes but not large scale parallel 
computations

GPU/DSP/FPGA:


• Initially created specifically for graphics 


• Became more capable of general computations 


• Very fast and powerful, computationally 


• Uses lots of electrical power


• This allows us to run many threads 
simultaneously with virtually no context switches

5



Data parallelism

L = r * 0.21 + g * 0.72 + b * 0.07 

Ref: Programming Massively Parallel Processors A Hands-On Approach by David B. Kirk et al
6



GPU considerations 


• Not all problems are parallelizable


• GPU performance drops dramatically if the code branches 


• CPU and GPU code can overlap execution 


• GPUs do not make function calls efficiently, and cannot recurse 


• Certain operators are very fast on GPUs, and other functions are not. (e.g Integer division, 
modulus, 64bit integer division etc.)


• GPUs have a limited number of registers available to use. 


• Global memory accesses are very slow 


• Local shared memory is very fast 

7



GPU & Global memory 


8



CUDA vs OpenCL


9

Comparison CUDA OpenCL

Performance - -

Vendor 
Implementation Implemented by only NVIDIA devices Implemented by TONS of vendors including AMD, 

NVIDIA, Intel, Apple, Radeon etc.

OSS vs Commercial Proprietary framework of NVIDIA Open Source standard

OS Support
Supported on the leading Operating systems with 
the only distinction of NVIDIA hardware must be 
used

Supported on various Operating Systems

Libraries Has extensive high performance libraries
Has a good number of libraries which can be used 
on all OpenCL compliant hardware but not as 
extensive as CUDA

Community Has a larger community Has a growing community not as large as CUDA

Technicalities
Not a language but a platform and programming 
model that achieves parallelization using CUDA 
keywords

Does not enable for writing code in C++ but works 
in a C programming language resembling 
environment

Ref: incredibuild.com



2. CUDA

CUDA platform


Export GPU APIs for general purpose


CUDA C/C++


Based on C/C++ standard


APIs to manage GPU devices, memory etc.

10



Goals

Write and execute starter C code on GPU


Manage GPU memory


Communication and synchronization

11



Requirements

Virtual (remote) / Physical access to GPU devices


C/C++ experience


NO graphic rendering, GPU/parallel computing experience needed

12



Recommendation
CUDA C Programming Guide v9.1 | April 2018


Programming Massively Parallel Processors A Hands-On Approach by 
David B. Kirk, Wen-Mei W Hwu


CUDA C/C++ Basics (nVidia Corp.)


GPU Programming CS179 Caltech


CUDA Thread Indexing Cheatsheet 

13



Heterogeneous computing

Host : CPU and host memory (RAM) Device: GPU and device memory (VRAM)

Ref: business insider
14



Typical GPU computing workflow
• Setup inputs on the host (CPU-accessible memory) 


• Allocate memory for outputs on the host CPU 


• Allocate memory for inputs on the GPU 


• Allocate memory for outputs on the GPU 


• Copy inputs from host to GPU (slow) 


• Start GPU kernel (function that executes on gpu – fast!) 


• Copy output from GPU to host (slow)

15



Ref: CUDA C/C++ Basics NVIDIA
16



Ref: CUDA C/C++ Basics NVIDIA
17



Ref: CUDA C/C++ Basics NVIDIA
18



Helloworld

#include <stdio.h>

int main(void) {

printf("Hello World!\n");

return 0;

}

/**

0.00s user 0.00s system 77% 
cpu 0.001 total

**/

#include <stdio.h>

__global__ void mykernel(void) { }

int main(void){

mykernel<<<1,1>>>();

printf("Hello, World\n");

return 0;

}

/**

0.02s user 0.10s system 55% cpu 
0.223 total

**/

nvcc hello.cu -o helloC

19



Syntax
__global__ : 


1. A qualifier added to standard C. This alerts the compiler that a function should be  
compiled to run on a device (GPU) instead of host (CPU).  

2. Function mykernel() is called from host code.  

Compile: nvcc hello.cu 
nvcc separates source code into host and device components 


Device functions (e.g. mykernel()) processed by NVIDIA compiler 
Host functions (e.g. main()) processed by standard host compiler like gcc 


20



Simple addition (1)

__global__ void add(int *a, int *b, int *c)

{

    *c = *a+*b;

}


nvcc add.cu -o add

What live in memory rest in memory

• Device (/Host) pointer point to Device(/Host) memory

• Device (/Host) pointer maybe passed from to Host(/Device) memory

21



Simple addition (2)

__global__ void add(int *a, int *b, int *c)

{

    *c = *a+*b;

}


*c = a+b; } 

nvcc add.cu -o add

What live in memory rest in memory
• a,b,c point to device memory -> need to allocate memory on GPU

• cudaMalloc(), cudaFree(), cudaMemcpy()

• Similar to C: malloc(), free(), memcpy()

22

__global__ void add(int *a, int *b, int *c)

{

    *c = *a+*b;

}




Simple addition (3)

int main(void) {

int a, b, c;          // host copies of a, b, c 

int *d_a, *d_b, *d_c; // device copies of a, b, c

int size = sizeof(int);// Allocate space for device of a, b, c

nvcc add.cu -o add

23

cudaMalloc((void **)&d_a, size);

cudaMalloc((void **)&d_b, size);

cudaMalloc((void **)&d_c, size);

a = 2; b = 7;          // Setup input values



Simple addition (4)

// Copy inputs to device

cudaMemcpy(d_a, &a, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_b, &b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU

add<<<1,1>>>(d_a, d_b, d_c);

nvcc add.cu -o add

24

// Copy result back to host

cudaMemcpy(&c, d_c, size, cudaMemcpyDeviceToHost);

printf("%d+%d = %d\n", a, b, c);

// Cleanup

cudaFree(d_a); cudaFree(d_b); cudaFree(d_c); return 0;

}




Simple Parallelization (1)

add<<<1,1>>>(d_a, d_b, d_c);


add<<<N,1>>>(d_a, d_b, d_c);


- Instead of executing add() once, execute N times in parallel 

25

• Each parallel invocation of add() is referred to as a block 

• The set of blocks is referred to as a grid


• Each invocation can refer to its block index using blockIdx.x 

•



Simple Parallelization (2)

26

__global__ void add(int *a, int *b, int *c) {

 c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x]; 
} 

! By using blockIdx.x to index into the array, each block handles a different 
element of the array 
•



Simple Parallelization (3)

27

#define N 512

int main(void){

int *a, *b, *c;          // host copies of a, b, c

int *d_a, *d_b, *d_c;    // device copies of a, b, c

int size = N*sizeof(int);// Allocate space for device of a, b, c

cudaMalloc((void **)&d_a, size);

cudaMalloc((void **)&d_b, size);

cudaMalloc((void **)&d_c, size);

a = (int *)malloc(size);

b = (int *)malloc(size);

c = (int *)malloc(size);

for(int i=0; i<N; i++)

{

a[i] = -i;

b[i] = i*i*i;

}




Simple Parallelization (4)

28

// Copy inputs to device

cudaMemcpy(d_a, a, size, cudaMemcpyHostToDevice);

cudaMemcpy(d_b, b, size, cudaMemcpyHostToDevice);

// Launch add() kernel on GPU

add<<<N,1>>>(d_a, d_b, d_c);

// Copy result back to host

cudaMemcpy(c, d_c, size, cudaMemcpyDeviceToHost);

for(int i=0;i<N;i++) printf("%d+%d = %d\n", a[i], b[i], c[i]);

// Cleanup

free(a); free(b); free(c);

cudaFree(d_a); cudaFree(d_b); cudaFree(d_c); return 0;

}




GPU Grids, blocks, threads (1)

29

__global__ void add(int *a, int *b, int *c) {

 c[blockIdx.x] = a[blockIdx.x] + b[blockIdx.x]; 
} 



GPU Grids, blocks, threads (2)

30

__global__ void add(int *a, int *b, int *c) {

 c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x]; 
} 

• Terminology: a block can be split into parallel threads 

• We use threadIdx.x instead of blockIdx.x 



GPU Grids, blocks, threads (3) 

31

__global__ void add(int *a, int *b, int *c) {

 c[threadIdx.x] = a[threadIdx.x] + b[threadIdx.x]; 
} 

add<<<N,1>>>(d_a, d_b, d_c);


add<<<1,N>>>(d_a, d_b, d_c);



Combining GPU Blocks & Threads (1) 

32

• Limit of the number of blocks in a single launch: 65,535. 


• Limit of the number of threads per block.  
– For many GPUs, maxThreadsPerBlock = 512 (or 1024, ..). 


• Blocks and threads are often combined. 


• kernel access: Array[block_index+thread_index] 



Combining GPU Blocks & Threads (2) 

33



Combining GPU Blocks & Threads (3) 

34



Combining GPU Blocks & Threads (4) 

35

Use the built-in variable blockDim.x for threads per block


int index = threadIdx.x + blockIdx.x * blockDim.x; 


__global__ void add(int *a, int *b, int *c) { 
int index = threadIdx.x + blockIdx.x * blockDim.x;

c[index] = a[index] + b[index]; 
}


#define N (2048*2048) // 2**22
#define THREADS_PER_BLOCK 512

add<<<N/THREADS_PER_BLOCK,THREADS_PER_BLOCK>>>(d_a, d_b, d_c); 



Combining GPU Blocks & Threads (5) 

36

Avoid access beyond the array dimension.

__global__ void add(int *a, int *b, int *c, int n) 
{ 
int index = threadIdx.x + blockIdx.x * blockDim.x;

if (index < n) c[index] = a[index] + b[index]; 
}


#define N (2048*2048) 
#define TPB 512

add<<<(N+TPB-1)/TPB,TPB>>>(d_a, d_b, d_c, N); 



Reasons of GPU Blocks & Threads

37

Unlike parallel blocks, threads have mechanisms to efficiently: 


- Communicate 


- Synchronize 
Sharing between threads



Sharing between threads (1)
Example: 1D stencil calculation

38

Each output element is the sum of input elements within a radius 



Sharing between threads (2)
Example: 1D stencil calculation

39
With radius 3, each input element is read seven times 



Sharing between threads (3)

40

Within a block, threads share data via shared memory 


Extremely fast on-chip memory: a user-managed cache


Declare using __shared__, allocated per block 


Not visible to threads in other blocks 



Sharing between threads (4)

41

__global__ void stencil_1d(int *in, int *out) 
{ __shared__ int temp[BLOCK_SIZE + 2 * RADIUS]; 
int gindex = threadIdx.x + blockIdx.x * blockDim.x; 
int lindex = threadIdx.x + RADIUS;
// Read input elements into shared memory 

temp[lindex] = in[gindex];

if (threadIdx.x < RADIUS) { 

temp[lindex - RADIUS] = in[gindex - RADIUS]; 

temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE]; 
} 




Sharing between threads (5)

42

// Apply the stencil

int result = 0; 
for (int offset = -RADIUS ; offset <= RADIUS ; offset++) 
result += temp[lindex + offset]; 

// Store the result

out[gindex] = result;

}




Sharing between threads (6)

43

// Read input elements into shared memory 

temp[lindex] = in[gindex];

if (threadIdx.x < RADIUS) { 

temp[lindex - RADIUS] = in[gindex - RADIUS]; 

temp[lindex + BLOCK_SIZE] = in[gindex + BLOCK_SIZE];

}

// Apply the stencil

int result = 0;

for (int offset = -RADIUS ; offset <= RADIUS ; offset++) 

result += temp[lindex + offset]; 

BUGS
DATA RACE

DATA ACCESS VIOLATION



Sharing between threads (7)

44

! void __syncthreads(); 
! Similar to barrier() in C/C++: https://en.wikipedia.org/wiki/
Barrier_(computer_science)


! Synchronizes all threads within a block: Used to prevent RAW / WAR / 
WAW hazards


! All threads must reach the barrier: In conditional code, the condition must 
be uniform across the block 



Sharing between threads (6)

45

// Read input elements into shared memory 


temp[lindex] = in[gindex];

if (threadIdx.x < RADIUS) { 
temp[lindex - RADIUS] = (gindex >= RADIUS)?in[gindex - RADIUS]:0;

temp[lindex + BLOCK_SIZE] = ((gindex + BLOCK_SIZE)<N)?in[gindex + 
BLOCK_SIZE]:0;

}

__syncthreads(); 

// Apply the stencil

int result = 0; 
for (int offset = -RADIUS ; offset <= RADIUS ; offset++) 
result += temp[lindex + offset]; 



Performance

• Example is used for its simplicity. 


• the overhead of allocating device memory, input data transfer from host to 
device, output data transfer from device to host, and de-allocating device 
memory will likely make the resulting code slower than the original sequential 
code 


• This is because the amount of calculation done by the kernel is small relative 
to the amount of data processed. 

46



Takeaways

47

! Launching parallel threads 
! Launch N blocks with M threads per block with kernel<<<N,M>>>(…);

! Allocate elements to threads: 
int index = threadIdx.x + blockIdx.x * blockDim.x; 

! Use __shared__ to declare a variable/array in shared memory: Data is shared 
between threads in a block & Not visible to threads in other blocks 
! Use __syncthreads() as a barrier: Use to prevent data hazards 



Skipped topics

48

• 	 Multi-dimensional indexing :

• A kernel is launched as a grid of blocks of threads 


• blockIdx and threadIdx are 3D 

• We showed only one dimension (x)  

• Compute capability

• Optimization, reduction operator https://en.wikipedia.org/wiki/Reduction_operator

https://en.wikipedia.org/wiki/Reduction_operator


CUDA ERROR HANDLING


cudaError_t err=cudaMalloc((void **) &d_A, size);

if (error !=cudaSuccess) { 

printf(“%s in %s at line %d\n”, 
cudaGetErrorString(err),__FILE__,__LINE__); 
exit(EXIT_FAILURE); 

} 
Consider to use MACRO version:

static void HandleError( cudaError_t err,const char 
*file,int line ) {…}


#define HANDLE_ERROR(err) (HandleError( err, __FILE__, 
__LINE__ ))


49



CUDA DEBUG


nvcc -g -G add.cu -o add

cuda-gdb ./add

> p blockDim.x

> info cuda threads

> cuda thread 1

> cuda block 1


cuda-memcheck


nvprof


Event Timers


50

Ref: Introduction to CUDA Utilities

https://cis.gvsu.edu/~wolffe/courses/cs677/projects/tutorial_CUDA-
utilities.html


https://cis.gvsu.edu/~wolffe/courses/cs677/projects/tutorial_CUDA-utilities.html
https://cis.gvsu.edu/~wolffe/courses/cs677/projects/tutorial_CUDA-utilities.html


CUDA Best Practices


• Find ways to parallelize sequential code,


• Minimize data transfers between the host and the device,


• Adjust kernel launch configuration to maximize device utilization,


• Ensure global memory accesses are coalesced,


• Minimize redundant accesses to global memory whenever possible,


• Avoid long sequences of diverged execution by threads within the same warp.


• Ref: https://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
51



Rainbow table/hash generator on GPU(1)

52

Name Hash OSS Notes Functionalities

Advanced RT Gen md5 Open GPU is only beta tested RT generator

Cryptohaze GPU 
Rainbow Cracker

MD4,MD5,NTL
M,SHA1 Closed

Full GPU acceleration for table 
generation (incl. reduction 
function) and cracking

RT generator, merge, 
indexing, lookup

Rainbow Crackalack NTLM Open Well documented RT generator, lookup

md5-rainbow-table-
gen-opencl md5 Open Only PoC RT generator

RainbowCrack
LM, NTLM, 
MD5, SHA1, 
SHA256 ..

Closed GPU supported in rainbow table 
lookup but not generation

RT generator, merge, 
indexing, lookup



Rainbow table/hash generator on GPU(2)

53

Recommended Reading


• Steven Meyer EPFL, Breaking 53 bits passwords with Rainbow tables using 
GPUs https://docplayer.net/50461249-Breaking-53-bits-passwords-with-
rainbow-tables-using-gpus.html


• Russell Edward Graves, Iowa State University, High performance password 
cracking by implementing rainbow tables https://lib.dr.iastate.edu/cgi/
viewcontent.cgi?article=2860&context=etd

https://docplayer.net/50461249-Breaking-53-bits-passwords-with-rainbow-tables-using-gpus.html
https://docplayer.net/50461249-Breaking-53-bits-passwords-with-rainbow-tables-using-gpus.html
https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=2860&context=etd
https://lib.dr.iastate.edu/cgi/viewcontent.cgi?article=2860&context=etd


Rainbow table/hash generator on GPU(2)

54

Recommended references


• Rainbow2 Rainbow tables using Nvidia GPU: https://github.com/voyager23/
Rainbow2


• NTHashTickler_CUDA. NT hash bruteforcer on CUDA. https://github.com/
ryanries/NTHashTickler_CUDA



Assignments
- Installation of CUDA Toolkit

- Parallelise hash computing 


55



References
- CUDA C/C++ Basics NVIDIA

- ACMS 40212/60212: Advanced Scientific Computing, U.ND.


56


