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Introduction

Trending of attacks on embedded devices.
Difficulties for antivirus solutions on IoT devices: Resource constraints.
Malware detection bypasses
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Malware analysis techniques
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Malware-evasion techniques

Static analysis

Malware obfuscation
Packers

Dynamic analysis

Anti-debugging
”Side-channel information”
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Proposed solutions: dynamic analysis and side-channel

Bare-metal device
Side channel information

Power consumption
Electromagnetism (EM)
Cache, HPC (software)
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State of the art

Anomaly detection using power consumption and EM.

RQ1
How can we build and setup an IoT malware classification and detection on embedded device using EM?

Contribution
Automated framework to automatically classify IoT malware by leveraging EM.
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State of the art

Anomaly detection using power consumption and EM.
Lack of research of side-channel detection for real-world malware.
No variations regarding obfuscation and packers.

RQ2
If a malware analyst has a dataset of unlabeled binaries. Would it be possible to classify the dataset into
labeled types, families, variants of malware or rootkits, obfuscation techniques used etc.?

Contribution
Real-world malicious and benign IoT dataset classification.
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State of the art

Anomaly detection using power consumption and EM.
Lack of research of side-channel detection for real-world malware.
No variation regarding obfuscation and packers.
Utilize benchmark software to detect rootkit.

RQ3
Is it feasible to utilize EM for stealthy rootkit detection on embedded devices?

Contribution
Novel baits to detect rootkit in real-time.
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Obfuscation Revealed: Leveraging
Electromagnetic Signals for Obfuscated Malware

Classification

Joint work with Damien Marion, Mathieu Mastio and Annelie Heuser

Duy-Phuc Pham, Damien Marion, and Annelie Heuser. “Poster: Obfuscation Revealed-Using Electromagnetic Emanation to Identify and Classify Malware”. In: 2021 IEEE European Symposium on
Security and Privacy (EuroS&P). IEEE. 2021, pp. 710–712.
Duy-Phuc Pham et al. “Obfuscation Revealed: Leveraging Electromagnetic Signals for Obfuscated Malware Classification”. In: Annual Computer Security Applications Conference (ACSAC). 2021.
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Proposed framework AHMA

Data acquisition

Dataset variations
Dataset

generation
Synthetic user
environment

Dynamic malware execution Data storageEM

Data preprocessing

Time domain Spectrogram Features selection

STFT

Malware classification

MLP CNN

SVM NB

21

3
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Dataset: Understanding of IoT malware epidemiology

AVClass to classify
malware labels
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Dataset: Understanding of IoT malware insights

AVClass to classify mal-
ware labels

Code reviews and reverse
engineering

DDoS Ransomware Rootkits
Mirai GonnaCry spy
Bashlite (AES, Blowfish, DES) MaK_It
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Dataset: Variations

AVClass to classify mal-
ware labels
Code reviews and reverse
engineering

Obfuscations

UPX, Tigress, O-LLVM
Opaque predicates, bogus control flow, instructions substitution,
control-flow flattening; packer and code virtualization
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Dataset: Variations

AVClass to classify mal-
ware labels
Code reviews and reverse
engineering
Obfuscations

Benign dataset

Random Linux activities
IoT activities

Video encoding
Camera captures
Music
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Target devices

Specifications

Multi-purpose embedded device.
Prominent architecture: ARM and
MIPS.

→ Raspberry Pi B+, Creator CI20

2

1

Raspberry Pi B+
Creator CI20
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Target environment

Isolated controller server
Embedded device inside synthetic environment

Randomized files (to trigger ransomware)
Keyboard emulation (to trigger keylogger)
Default services (no artifacts)

Spoofed C&C server
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Data and pre-processing

Raw traces:
106k(traces) × 2(MS/s) × 2.5(s) [1.2TB]
Time-frequency representation:
Short-time Fourier transform
spectro{x(n)}(m, ω) = |

∑N
n=0 x(n)w(n−m)e−jωn|2{

windows = 8192
overlap = 4096

Mirai’s peak
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Features selection: Normalized Inter-Class Variance [Bha+14]

NICV(X ,Y ) = Var[E[X |Y ]]
Var[X ]

Fextract = argmaxε

({
max

[
NICV(X ,Y )D

f
]}

f <F

)

1
2

3
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Machine Learning & Deep Learning models

Machine Learning

Linear Discriminant Analysis (LDA) + Naive Bayes (NB)
Linear Discriminant Analysis (LDA) + Support vector machine (SVM)

Deep Learning

Multi-Layer Perceptron (MLP)
Convolutional Neural Network (CNN)
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Malware classification results

# MLP CNN LDA+NB LDA+SVM
Scenarios
Executables 31 73.56 [24] 82.28 [24] 70.92 [28] 71.84 [20]
Type 4 99.75 [28] 99.82 [28] 97.97 [24] 98.07 [24]
Family 6 98.57 [28] 99.61 [28] 97.19 [28] 97.27 [28]
Novelty 5 88.41 [16] 98.85 [24] 98.25 [28] 98.61 [28]
Virtualization 2 95.60 [20] 95.83 [24] 91.29 [6] 91.25 [6]
Packer 2 93.39 [28] 94.96 [20] 83.62 [16] 83.58 [16]
Obfuscation 7 73.79 [28] 82.70 [24] 64.29 [10] 64.47 [10]

Table 1. Accuracy obtained with MLP, CNN, LDA + NB and LDA + SVM applied on several scenarios.
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Takeaways

Classify various malware samples in multiple in-the-wild scenarios.
Obfuscation technique can be classified.
Evaluation of both DL/ML.
Evaluated Artifacts:

Code: https://github.com/ahma-hub/analysis/wiki
Data: https://zenodo.org/record/5414107
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Disadvantages

Disadvantages

Oscilloscopes: difficulties in practical usage and expensive
It only works with active malware not passive: stealthy rootkits.
Difficulties for file-less and self-deleting malware detection.
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Software defined radio

SDR Advantages

Flexible and adaptable
Suitable for streaming mode
Affordable and portable 1
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ULTRA: Ultimate Rootkit Detection over the Air

Joint work with Damien Marion and Annelie Heuser

Media: Hackaday

Duy-Phuc Pham, Damien Marion, and Annelie Heuser. “ULTRA: Ultimate Rootkit Detection over the Air”. In: 25th International Symposium on Research in Attacks, Intrusions and Defenses
(RAID). 2022.
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Rootkit modus operandi

Classification

User-level
Kernel-level
Boot and hypervisor level
Hardware and firmware level

kill() syscall flow
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Rootkit modus operandi

Classification

User-level
Kernel-level
Boot and hypervisor level
Hardware and firmware level

Diamorphine rootkit syscall hooking
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Countermeasure: Bait design

Bait definition
A bait β, which is a software or hardware stimulus on a device δ, has the following requirements:
(i) The bait can trigger partial or full behavior of rootkits without knowing modus operandi of the
rootkit in advance;
(ii) It has a variable duration time of execution activities that can be remotely controlled;
(iii) It cannot be distinguished from common benign behavior (e.g., it relies on unprivileged execution).

1

2

An example of hardware bait
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Countermeasure: Bait example

Classification

User-level
Kernel-level
Boot and hypervisor level
Hardware and firmware level

diamorphine hook

bait execution flow

Proposed bait running with Diamorphine on infected
device
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Proposed framework ULTRA (Open source)

EM data

Software Bait(s)

Target device(s)

infected

clean

SDR device(s) Spectrogram Features selection

Hardware bait

ML & DL

Test

Models
Offline profiling

Online testing

radio
signals

1 2 3
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Dataset: Real-world rootkit and device activities

Benign activities
User-space: Linux utilities, etc.
Kernel-space: Kernel drivers, firewalls, etc.

Rootkit dataset
Hide files Network Keylogger RAT LPE Mode

diamorphine? Kernel
m0ham3d? Kernel
adore-ng Kernel
spy Kernel
maK_it Kernel
beurk User
vlany User
? plus an obfuscated version.
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Data acquisition and processing

Pre-processing
EM monitoring during 0.5 seconds using HackRF SDR with 2MHz window,

Centered in 1222MHz for Raspberry Pi B+ and 792MHz for the Creator CI20.
Time frequency representation: short-time Fourier transform{

windows = 8192
overlap = 4096

Open-data (traces and models)

https://zenodo.org/record/5902451
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Machine Learning & Deep Learning

Deep Learning

Multi-Layer Perceptron (MLP)

Machine learning

Kernel PCA (KPCA) + Naive Bayes (NB)
Kernel PCA (KPCA) + Support vector machine (SVM)

Hill climbing algorithm
Iterated “forward selection” of the sorted extracted bandwidth (using NICV) for optimal bandwidth
selection.

Average processing (optional)

The testing traces can be average to increase the detection rate.
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Results: Novelty detection using getdents
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Results: Different types and locations of probes

Probe type
MLP KPCA + NB KPCA + SVM

Scenario BA [εopt] TPR TNR BA [εopt] TPR TNR BA [εopt] TPR TNR
{0, 0} ){0, 0} 100[2] 100 100 100[2] 100 100 100[2] 100 100
{0, 0} ){1, 0} 100[2] 100 100 100[2] 100 100 100[2] 100 100
{0, 0} ){2, 1} 60.6[2] 21.4 99.9 50.0[2] 0.0 100 50.0[2] 0.0 100
{1, 0} ){1, 0} 100[2] 100 100 100[3] 100 100 100[2] 100 100
{2, 1} ){2, 1} 100[1] 100 100 100[4] 100 100 100[4] 100 100

More scenarios available: sample classification, keylog-
gers detection with software and hardware baits, influence
of benign kernel activities, effect of background noise, in-
fluence of obfuscation.

10

ULTRA with a cheap probe
beurk vs. open bait
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Conclusion

ULTRA framework: Wave-and-Play solution.
Investigation of various experiments and real-world scenarios.
Promising solution (detection accuracy up to 100%) and handy: tested with multiple probes and
probe relocation with affordable SDR.
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Open questions and Perspectives (1/3)

Short-term
Larger dataset and upcoming threats (eg. hy-
pervisor, eBPF rootkits)
IoT malware and rootkits from APT campaigns
(eg. APT28, UNC3524/APT29)

Ring 3

Ring 2

Ring 1

Ring 0

Ring-1

Ring-2
SMM

Kernel
VM

Device drivers

Device drivers

Applications

Least privilegedMost privileged

CPU privilege levels
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Open questions and Perspectives (2/3)

Long-term
A standalone solution that uses electromagnetic waves to detect malware and similar threats for
other platforms (PLC, Linux servers, etc.)
Portable solution with GPU (e.g. Nvidia Jetson Nano)
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Open questions and Perspectives (3/3)

Long-term
Evasion techniques
→ Dynamic bare-metal malware analysis pitfalls
→ Electromagnetic noise (eg. NoiseSDR [CF22])
Model explainability

Giovanni Camurati and Aurelien Francillon. “Noise-SDR: Arbitrary modulation of electromagnetic noise from unprivileged software and its impact on emission security”. In: IEEE Symposium on
Security and Privacy. San Francisco, CA: IEEE Computer Society, 2022.
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Balanced Accuracy

Consider a dataset that contains 99 negative samples and 1 positive sample. Classifying all values as
negative yields a 0.99 accuracy score.
Balanced Accuracy is not affected by this issue. It normalizes true positive and true negative predictions
by the number of positive and negative samples, respectively, and divides their sum by two:

BA = TPR + TNR
2 (1)
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Monitor device(s)

Picoscope 6000
Keysight Infiniium
HackRF SDR
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Deep Learning models

Multi-Layer Perceptron (MLP)
Convolutional Neural Network (CNN)
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Deep Learning models (MLP)

Table: Proposed MLP architecture of ULTRA framework

Layer Size Filter Activation
Flatten spectrogram_size _ leaky relu
Dense 500 _ leaky relu
Dense 200 _ leaky relu
Dense 100 _ leaky relu

softmax (multi-class)Dense N _ or sigmoid (two-class)
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Deep Learning models (CNN)

Layer Size Filter Activation
Convolution 64 7 × 7 relu
Max Pooling 64 2 × 2 _
Convolution 128 3 × 3 relu
Convolution 128 3 × 3 relu
Max Pooling 128 2 × 2 _
Convolution 256 3 × 3 relu
Convolution 256 3 × 3 relu
Max Pooling 256 2 × 2 _
Dense 128 _ relu
Dense 64 _ relu
Dense nb_labels _ softmax
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State of the art (1)

Article Year Techniques

WattsUpDoc: Power SC to Nonintrusively Discover Untar-
geted MW on Embedded Medical Devices

2013 - Detection of 12 MW variants
- Power & MLP & 3NN &RF

Detecting crypto‐ransomware in IoT networks based on energy
consumption footprint

2017 - MW detection of Ransomware
- PowerTutor & KNN

Deep learning-based classification and anomaly detection of
side-channel signals

2018 - Anomaly detection of botnet
- Power & MLP & LSTM

HLMD: a signature‐based approach to HW‐level behavioral
MW detection and classification

2019 - MW classification of 14 variants
- HPC & singular values
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State of the art (2)

Article Year Techniques

EDDIE: EM-based detection of deviations in program execu-
tion

2017 - Code Inj. detection
- EM & STFT & KS

MW detection in embedded systems using NN model for EM
SC signals

2019
- MW detection of DDoS, Ransomware, CF
Hijack
- EM & MLP

→ Real world malware.
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State of the art (3)

Table: Comparison with related works on side-channel malware (SCM) analysis using EM or power consumption.

Article SCM
detection

Anomaly
detection

SCM
classification

Real-world
SCM

Real-world
analysis

environment

Samples
size

Varia-
tions

Benign
dataset

Window
size

Open
data,

source
code

Device under test

WattsUpDoc
[Cla+13] X - - X - 15 - - 5s - Windows XP Embedded

664 MHz
IDEA [Kha+19] - X - - - 3 - - <40µs - AT328p 16MHz, Cortex A8

REMOTE
[Seh+20] - X - X - 3 - - <10ms - Single-core ARM 1Ghz

Wang et al.
[Wan+18] - X - - - 1 - - 10s - Raspberry Pi, Arduino,

Siemens PLC
Khan et al.
[Kha+19] X - - - - 3 - - <150µs - Cyclone II FPGA & NIOS

II soft-processor
DeepPower
[Din+20] X - X X - 5 - - 1s - MIPS/ARM

OpenWRT
Chawla et al.

[CKM21] X - X X - 137 - X 10s - Android Intrinsyc Open-Q
820

Chapter ?? (X)* - X X X 35 X X 2.5s X Multi-core, 900 Mhz ARM
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State of the art (4)
S

ol
u

ti
on

s

user space kernel space hypervisor HPC DMA Power

Detection level

OS-

SEC [BCH08]

AIDE [LGO04]

rkhunter [BH12]

chk-

rootkit [MSJ01]

Kernel

integrity:

LKRG [Zab18]

JoKER [Gur+15]

HookSafe

[Wan+09]

Shadow-

box [HP18]

HPC: [WK13;

Sin+17; JLC20]

Copilot

[PJ+04]

Gibral-

tar[BGI11]

[Luc+18;

Bri+18] ULTRA

Taxonomy of rootkit detection approaches and positioning our approach in the state of the art and open source
tools.
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State of the art (5)

Table: Comparison with related works on rootkit (RK) detection using different side-channel analysis techniques:
HPC, DMA, Power consumption (Power) and EM.

Article WnP Classifi-
cation Baits ML DL Sample

size
Open
source Benign User RK Window size Device under test

Numchecker
[WK13] - - X - - 8 - - - 262.3 ms 32-bit Ubuntu PC

[Sin+17] - - - X - 5 - - - 45s VMWare Windows 7 IntelH
P

C

[JLC20] - - X X - 4 - - - 2.91s ARM Cortex-A53
Copilot [PJ+04] - - - - - 12 - - - 30s PCI-compatible Intel PC Linux

D
M

A

Gibraltar [BGI11] - - - - - 23 - X - 20s PCI-compatible Intel PC Linux
[Luc+18] - - - X X 5 - - X >5m PC Windows 10 & Ubuntu 14

Po
w

er

[Bri+18] - - - X - 5 - - - >1m Dell OptiPlex 755 Windows 7

EM ULTRA X X X X X 9 X X X 1.3s ARM Raspberry Pi & MIPS Ci20
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Confusion matrix of a CNN classification into 35 binaries

Confusion matrix of a CNN classification into 35 binaries from left to right (with and without obfuscation).
(1) bashlite_cfflatten, bashlite_upx, bashlite_bcf, bashlite, bashlite_addopaque, bashlite_sub, bashlite_flatten, bashlite_virtualize;
(2) mirai_sub, mirai_bcf, mirai_cfflatten, mirai, mirai_upx, mirai_addopaque, mirai_flatten, mirai_virtualize;
(3) gonnacry_des, gonnacry_des_upx, gonnacry, gonnacry_aes, gonnacry_aes_upx, gonnacry_upx, gonnacry_flatten, gonnacry_virtualize, gonnacry_addopaque, gonnacry_bcf, gonnacry_sub,
gonnacry_cfflatten;
(4) spy, maK_It;
(5) benign: encode video, play audio, take picture, record camera, random.
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Dataset: Benign

Binaries from fresh Linux
installation
Random activities

Activities Executables

mknod vdir more find
zgrep ls cat findmnt
zmore as ed rm
touch dmesg sleep cd

Linux Utilities

less grep objdump
Network wget hostname ss ip

gunzip bunzip2 bzip2 tarCompression uncom-
press

Data backup dd
Scripting python
Photo & Video raspistill raspivid
Video Encoding MP4Box
Audio player mpg321
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ULTRA’s targeted devices specification

Table: ULTRA’s targeted devices specification, architectures (Arch.), and their targeted frequency leakage (Fc)
and CPU in MHz.

Device δ Arch. CPU RAM OS Fc
Raspberry Pi B+ ARM32 700 512MB Linux 4.1.7 1222
Creator CI20 MIPS32 1200 1GB Linux 3.18.3 792
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ULTRA’s bill of materials

Table: ULTRA’s bill of materials

Equipment Rate/Unit Count Amount (Euro)
HackRF One SDR 309 1 309
Adapter SMA Male BNC Female RG316 5 1 5
Amplifier Langer PA-303 BNC 375 1 375
Probe Langer RF-U 5-2∗ 250 1 250
Total 939
∗ This can be omitted in the case of using a hand-crafted probe.
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Comparison

Table: Performance evaluation of rootkit (RK) and their obfuscated variants(∗) detection results, and execution
latency. List of indicators: (X) RK detected; (-) Not detected; (†) Malicious behavior trigger required; (")
Kernel panicked; Executed on (‡) CPU ; (§) GPU.

RK AV solutions
rkhunter chkrootkit LKRG ULTRA

diamorphine X - X† X
diamorphine(∗) - - X† X
m0ham3d X - X† X
m0ham3d(∗) - - X† X
adore-ng - - X†" X
spy - - - X
maK_it - - - X
beurk - - - X
vlany - - - X

Latency (sec) 1326.6‡ 44.3‡ 2.6‡ 1.3§-1.5‡
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Rootkit Classification

Table: Classification by family and by activity obtained with MLP, LDA + NB and LDA + SVM. The column
“#” gives the number of classes per scenario.

MLP LDA + NB LDA + SVM
Scenario # AC [εopt]

PR/RC AC [εopt]
PR/RC AC [εopt]

PR/RC

family 19 91.3[65] 83.0/83.0 76.0[10] 65.6/65.4 85.6[8] 76.1/76.3

δ c
i2

0

activity 46 82.5[45] 83.0/82.5 62.5[10] 63.2/62.4 76.0[10] 75.8/76.0

family 19 82.1[50] 79.1/76.5 54.7[10] 53.9/55.3 66.2[10] 66.9/60.1

δ r
as

p.

activity 46 75.0[40] 75.4/75.0 50.6[10] 51.5/55.6 59.2[9] 59.4/59.2
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